
Lifecycle Verification of the NASA Ames K9 Rover Executive

Dimitra Giannakopoulou1, 3 Corina S. Pasareanu2, 3 Michael Lowry3 and Rich Washington4
(1) USRA/RIACS

(2) Kestrel Technology LLC
(3) NASA Ames Research Center, Moffett Field, CA 94035-1000, USA

{dimitra, pcorina, lowry}@email.arc.nasa.gov
(4) Google Inc., 1600 Amphitheatre Parkway, Mountain View, CA 94043, USA

rwashington@google.com

Abstract
Autonomy software enables complex, robust behavior in
reaction to external stimuli without human intervention. It is
typically based on planning and execution technology.
Extensive verification is a pre-requisite for autonomy
technology to be adopted in high-risk domains. This
verification is challenging precisely because of the
multitude of behaviors enabled by autonomy technology.
 This paper describes the application of advanced
verification techniques for the analysis of the Executive
subsystem of the NASA Ames K9 Rover. Existing
verification tools were extended in order to handle a system
the size of the Executive. A divide and conquer approach
was critical for scaling. Moreover, verification was
performed in close collaboration with the system
developers, and was applied during both design and
implementation. Our study demonstrates that advanced
verification techniques are crucial for real-world planning
and execution systems. Moreover, it shows that when
verification proceeds hand-in-hand with software
development throughout the lifecycle, it can greatly
improve the design decisions and the quality of the resulting
plan execution system.

Introduction
Verification is essential for planning and execution
technology to be adopted in high-risk domains. This paper
is a demonstration of how advanced verification
techniques were used on a plan execution system in the
domain of Mars rovers.

The work presented here has been performed as part of a
project at NASA Ames. The objective of the project is to
develop and demonstrate the use of advanced verification
techniques for detecting integration problems in the design
and implementation of NASA autonomy software.
Traditional testing is hard for autonomous systems due to
high complexity and unpredictable environments.
Moreover, integration problems are very difficult to detect,
and are typically checked during integration testing, i.e.
after the entire system has been implemented. At that
stage, fixing such problems may require significant time

Copyright © 2002, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

and effort since they may involve major changes in the
architecture of the system, and possible re-implementation
of a large part of it. Therefore, we believe that the
verification of a safety critical system should be addressed
as early as possible during its design, and should go hand-
in-hand with later phases of software development.

Figure 1. Compositional verification throughout the
software lifecycle

Our work advocates the use of a combination of formal
analysis techniques and testing to analyze autonomous
systems throughout their lifecycle. Note that the size of
such systems is beyond the capabilities of existing (formal)
verification technologies. The combinatorics of the
possible behavior paths is also beyond the capabilities of
testing alone as a verification strategy. To address these
issues, our work has the following goals (see Figure 1):

• Apply, extend, and integrate verification tools at
different phases of software development, i.e. at design
and implementation phases of the software lifecycle.

• Use divide and conquer techniques that decompose the
verification of a software system into manageable
verification of its components, to achieve scalability in
(formal) software verification. The verification of the
components can then be composed to verify the entire
system, hence the name ‘compositional verification’.

• Use design level artifacts to subsequently guide the
implementation of the system and to enable more efficient
verification at the source-code level.

The main contribution of the work discussed here is the
development of compositional verification and validation
techniques for autonomy software, and their integration

 Coding Deployment

Properties,
assumptions

 Integration issues handled early

 Cost of detecting/fixing bugs increases

Requirements
& Design

Model checking/
 Run time analysis

Compositional
Verification

with other verification techniques for an integrated
lifecycle approach to verification. This approach to
autonomy verification has been empirically validated and
quantified through their application to a significant
autonomy software system: the Executive of the K9
experimental Martian Rover developed at NASA Ames, a
concurrent software system of 35 K lines of C++ code.

Our ‘divide and conquer’ approach achieved an order of
magnitude improvement in performance, over monolithic
verification techniques. The performance was measured in
terms of time and memory consumption during model-
checking [11]. The verification effort was performed in
close collaboration with the designers and developers of
the system throughout its lifecycle, and consisted of the
following steps:

• Design level modeling. Detailed design level models
were created. The models describe the overall concurrent
architecture of the executive (coordinating and monitoring
components) and advanced features that allow for
increased autonomy (e.g. alternate plan execution, support
for concurrent activities, separation of start and end
constraints). A comprehensive set of requirements were
also created (both English and formal descriptions). The
requirements capture key concurrency and plan execution
properties. We believe that both the models and the
requirements could be successfully re-used for the design
and analysis of future advanced executives.

• Design level analysis. Model checking techniques were
used for the exhaustive verification of design models
against requirements. We developed automated
compositional reasoning techniques to increase the
scalability of model checking. These techniques were
applied to the analysis of the design models, achieving a
10x improvement – in terms of time and memory
consumed - over monolithic (non-compositional) model
checking.

• Code level analysis. Although design level verification
is important, subsequent code-level verification is needed
to guarantee that the implemented system indeed satisfies
the properties. We developed a methodology for using the
design level artifacts for the compositional verification of
source code, while improving the performance of
verification tools at the code level. For code-level analysis
of individual components, we used two complementary
techniques. We used software model checking, where we
obtained a 3x improvement in terms of consumed memory.
We also investigated the use of automated testing
technology (a combination of run-time verification, to
monitor the execution of the system, and automated test
input generation, to systematically generate test inputs up
to a given size).

As a result of design level analysis, we discovered several
integration problems. Based on these results, the developer
changed the design of the Executive, resulting in a
simplified architecture with increased modularity. We

analyzed both versions of the Executive. While for the first
version, we created the models after coding (partly by
reverse engineering), for the second version, we created
the design models before coding. During this process, we
re-used component models from the previous version.

This experiment convinced developers that there is
considerable benefit in using verification techniques at the
design level where several integration issues were
identified and corrected. Models were also used to quickly
experiment with design decisions. In addition, it was
acknowledged that the later in the lifecycle design errors
are identified, the more costly it is to fix them, especially if
such errors require major design changes in the system.
Our techniques are directly applicable to the analysis of
other complex autonomous systems. This is particularly so
for systems that make the notions of components explicit
(e.g. the Mission Data Systems [7]), since our
compositional techniques take advantage of the modular
architecture of the system.

Our work builds on a previous effort [15], where we
compared the performance of tools based on formal
methods to traditional testing for the code-level analysis of
the original version of the code of the K9 Executive. The
study presented in [15] compares verification tools on
industrial-size autonomy software (see also [15] for a
presentation of related work). What differentiates the work
presented here is 1) the integrated application of
techniques throughout the lifecycle and 2) the
development and application of novel compositional
techniques as a way of addressing scalability issues.

The rest of the paper is organized as follows. In the next
section we describe the architecture of the K9 Rover
Executive and the design changes made as a result of our
analysis. We then describe the compositional technologies
that were used for design- and code-level verification. We
follow with a discussion on the design-level modeling of
the Executive; we also describe the properties that were
checked and the results obtained from the lifecycle
verification of the Executive. Finally, we close the paper
with conclusions and some plans for future work.

K9 Rover Executive
The NASA Ames K9 Rover is an experimental platform
for autonomous wheeled vehicles called rovers, targeted
for the exploration of a planetary surface such as Mars. K9
is specifically used to test out new autonomy software,
such as the Rover Executive [16]. Previous to the
development of autonomy software, planetary rovers were
controlled through sequences of detailed, low level
commands uploaded from Earth. The Rover Executive
provides a more flexible means of commanding the rover
through the use of high-level plans, which the Executive

interprets and executes in the context of the execution
environment. The Executive monitors execution of
primitive actions, and performs appropriate responses and
cleanup when execution fails. The Rover executive is a
software prototype written in C++ by researchers at NASA
Ames (approximately 35K lines of C++ code).

Plans are programs written in a language that specifies
actions and constraints on the movement, experimental
apparatus, and other resources of the Rover. The
operational semantics of the language takes into account
the possibility of failure of atomic-level command actions.
The structure of a plan is a hierarchy of actions that the
Rover must perform: each plan is a node; a node is either a
task, corresponding to a primitive action, a (possibly
concurrent) block, corresponding to a logical group of
nodes, or a branch, representing a conditional branch
within the plan. In addition, floating branches, which are
plan fragments triggered dynamically, may be inserted into
the plan, allowing a limited form of run-time plan
modification. The plan language allows the association of
each action with a number of state or temporal start,
maintenance, and end conditions, which must hold before,
during, and on completion of the action execution,
respectively.

In contrast to programming language interpreters, the
executive is expected to be robust under many plan
primitive execution failures. The operational semantics for
recovery from primitive failures are extensive.

Architecture of the K9 Executive
Figure 2 illustrates the architecture of the executive, prior
to the design changes that the developer made partly as a
result of our analysis. The executive has been implemented
as a multi-threaded system, made up of a main
coordinating component named Executive, components for
monitoring the state conditions ExecCondChecker, and
temporal conditions ExecTimerChecker - each further
decomposed into two threads - and finally an
ActionExecution component that is responsible for issuing
the commands to the Rover. Synchronization between
components is performed through mutexes and condition
variables (implemented using the Posix libraries).

During the design level analysis of the executive, we
discovered several concurrency problems with the inter-
thread communication between different components of
the executive. To eliminate these problems, the developer
changed the architecture of the system, as illustrated in
Figure 3. The main change is the use of an Event Queue as
a communication mechanism between the Executive and
the rest of the components. As a result, the communication
between different components became much simpler and
less prone to errors. E.g., our analysis of the first version
revealed a concurrency problem (i.e. race condition) with a
variable shared between the ExecCondChecker and the

Executive. This shared variable was eliminated in the
second version, its role being replaced by the Event Queue.

Action
Execution

Executive

Database

Internal

DBMonitor

Plan
Watcher

ExecCondChecker

Exec Timer

Figure 2. Original architecture of the executive

Exec Timer

Executive

Action
Execution

Database

Internal

DBMonitor

Plan
Watcher

Event Queue

Alternate
plan library

ExecCondChecker

Figure 3. Updated architecture of the executive

Besides the changed architecture, the “new” executive
presents several functional changes from the original one:
added support for concurrent activities and “floating
branches” (dynamically inserted branches and plan
fragments), separation of temporal constraints from other
pre- and post-conditions, and addition of relative temporal
constraints to arbitrary actions within the plan. The high-
level changes are summarized below:

• The Executive was changed to be event-based. An Event
Queue was added. Both ExecTimer and ExecCondChecker
were simplified to return all events, leaving the task of
processing and ignoring events to the Executive. The
Executive acts on an “execution context” - a data structure
representing the current state of execution. This execution
context was augmented to support concurrent activities and
floating branches. The design documents were changed
from state diagrams into event-processing loops.

• The ActionExecution was changed to support parallel
execution threads.

• Simpler usage and removal of condition variables: there
were a number of places in the first version where
condition variables were used to coordinate information
passing between modules (such as the ExecCondChecker
and the Executive). By simplifying the information flow

(via the event queue), tight coordination is no longer
necessary.

• Design simplicity over code re-use: there were a few
places in the first version where code, locks, or features
were re-used for conciseness. However, in some cases this
made the design much more convoluted. For example, the
return value of ActionExecution was routed through the
Database and then the ExecCondChecker for uniformity
with other conditions being checked during execution.
However, this makes the information flow in the system
circuitous, unclear, and error-prone.

Design-Level Verification
At design level, we use verification techniques that
exhaustively explore all the possible executions of a
system. Although exhaustive exploration is typically
intractable at the code level, designs tend to be more
abstract, making them more amenable to efficient
verification. Specifically, we use model checking: given
some formal description of a system and of a required
property, model checking [11] automatically determines
whether the property is satisfied by the system. Since
scalability can also be an issue at the design-level, we
enhance model checking with compositional techniques.

In this section, we describe the LTSA verification tool for
design-level software analysis. We also present the
compositional techniques with which we extended the
LTSA.

The Labeled Transition System Analyzer (LTSA)
The LTSA [8] is an automated tool that supports
Compositional Reachability Analysis (CRA) [9] of a
software system based on its architecture. In general, the
architecture of a concurrent system has a hierarchical
structure. CRA incrementally computes and abstracts the
behavior of composite components based on the behavior
of their immediate children in the hierarchy.

The input language FSP (Finite State Processes) of the tool
is a process-algebra style notation with Labeled Transition
Systems (LTS) semantics. An LTS is a finite-state machine
whose transitions are labeled by actions, representing the
internal and communication events in which a component
may engage. LTSs are composed by synchronization of
common actions and interleaving of local, internal actions.
Safety properties are expressed as LTSs with extended
semantics, and are treated as ordinary components during
composition. Properties are combined with the components
to which they refer. They do not interfere with system
behavior, unless they are violated. In the presence of
violations, the properties introduced may reduce the state
space of the (sub) systems analyzed.

The LTSA framework treats components as open systems
that may only satisfy some requirements in specific
contexts. By composing components with their properties,
it postpones analysis until the system is closed, meaning
that all contextual behavior that is applicable has been
provided. The LTSA tool also features graphical display of
LTSs, interactive simulation and graphical animation of
behavior models, all helpful aids in both design and
verification of system models.

Compositional Analysis
We extended the LTSA model-checking tool with several
analyses done at the component level. The aim was to
address the “state-space explosion” problem; this term
describes the main limitation of model checking, which is
that it requires storing the entire explored system states in
memory, which is impossible for most realistic systems.

Compositional verification advocates a “divide and
conquer” approach to addressing state-space explosion:
properties of the system are decomposed into properties of
its components, so that if each component satisfies its
respective property, then so does the entire system.
Components are thus model checked separately. It is often
the case, however, that components only satisfy properties
in specific contexts (also called environments). This has
given rise to the assume-guarantee style of reasoning.

Assume-guarantee reasoning [12,13,14] first checks
whether a component M guarantees a property P, when it
is part of a system that satisfies an assumption A.
Intuitively, A characterizes all contexts in which the
component is expected to operate correctly. To complete
the proof, it must also be shown that the remaining
components in the system (M's environment) satisfy A.
This style of reasoning is captured by the following
assume-guarantee rule.

〈A〉 M1 〈P〉 (Premise 1)
〈True〉 M2 〈A〉 (Premise 2)

 〈True〉 M1 || M2 〈P〉

Several frameworks have been proposed to support this
style of reasoning. However, their practical impact has
been limited because they require extensive human input in
defining assumptions that are strong enough to eliminate
false violations, but that also reflect appropriately the
remaining system.

In previous work, we developed several novel techniques
that automate assume-guarantee reasoning. We
implemented these techniques in the LTSA tool and used
them in the analysis of the design models of the Rover
Executive. We should note that our techniques are general;
they rely on standard features of model checkers and could
therefore easily be introduced in any model checking tool.

In [2], we present an approach to synthesizing the
assumption that a component needs to make about its
environment for a given property to be satisfied. The
assumption produced is the weakest, that is, it restricts the
environment no more and no less than is necessary for the
component to satisfy the property. The automatic
generation of weakest assumptions has direct application
to the assume-guarantee proof. More specifically, it
removes the burden of specifying assumptions manually
thus automating this type of reasoning.

Figure 4. Framework for assume-guarantee reasoning

The technique presented in [2] does not compute partial
results, meaning no assumption is obtained if the
computation runs out of memory, which may happen if the
state-space of the component is too large.

We address this problem in [1], where we present a model
checking framework for performing assume-guarantee
reasoning using the above rule in an incremental and fully
automatic fashion. The framework is illustrated in Figure
4. To check that a system made up of two components M1
and M2 satisfies a property P, our framework automatically
learns and refines assumptions Ai for component M1 to
satisfy the property, which it then tries to discharge on
component M2. The framework uses an automata learning
algorithm [17] to construct the assumptions for the
compositional analysis of the models.

At each iteration i, the learning algorithm is used to build
an approximate assumption Ai, based on querying the
system and on the results of the previous iteration. The two
premises of the assume-guarantee rule are then checked.
Premise 1 is checked to determine whether M1 guarantees
P in environments that satisfy Ai. If the result is false, it
means that this assumption is too weak, and therefore
needs to be refined with the help of the counterexample
produced by checking premise 1. If premise 1 holds,
premise 2 is checked to discharge Ai on M2. If premise 2
holds, then according to the assume-guarantee rule P holds
in M1||M2. If it doesn’t hold, further analysis is required to
identify whether Ai is indeed violated in M1||M2 or whether

Ai is stronger than necessary, in which case it needs to be
refined. The new assumption may of course be too weak,
and therefore the entire process must be repeated. For
finite state systems, this process is guaranteed to terminate.
In fact, it converges to an assumption that is necessary and
sufficient for the property to hold in the specific system.

A useful characteristic of our framework is that the
generated assumptions are minimal; they strictly increase
in size as the learning algorithm progresses, and grow no
larger than the weakest assumption for M1 to satisfy P.
Moreover, in our experience, the interfaces between
components are small for well designed software.
Therefore, assumptions are expected to be significantly
smaller than the environment that they represent in the
compositional rules, and the cost of assume-guarantee
reasoning will be significantly smaller than monolithic
(non-modular) model checking, both in terms of time and
consumed memory. Recently, we have extended our
frameworks to handle more assume-guarantee rules and
more than two components.

Code Level Verification
In this section, we describe our methodology for using the
artifacts of the design level analysis to decompose the
verification of the implementations [4]. For source code
verification we investigated two technologies: software
model checking (achieves exhaustive verification at the
price of scalability) and run-time verification (achieves
scalability at the price of exhaustiveness).

Figure 5. Using design level assumptions for source
code verification

To address the scalability issues associated with software
verification, our approach integrates assume-guarantee
reasoning of concurrent systems at the design and at the
implementation level (see Figure 5). At the design level,
the architecture of a system is described in terms of
components and their behavioral interfaces modeled as
LTSs. Design models are intended to capture the design
intentions of developers, and allow early verification of
key integration properties. For example, consider a system
that consists of two design level components M1 and M2,
and a property P, describing the sequence of events that
the system is allowed to produce, or equivalently the bad
behaviors that the system must avoid.

Design

Code

M2 M1 A

C2 C1 A P

P

Model Checking
1. 〈 A i 〉 M 1 〈 P 〉 Learning

real
error?

2. 〈 true 〉 M 2 〈 A i 〉

A i

counterexample –

counterexample –

false

true
true

false

YN

P holds
in M1||M2

P violated
in M1||M2

Learning 1. 〈 A i 〉 M 1 〈 P 〉

real
error?

2. 〈 true 〉 M 2 〈 A i 〉

Model Checking
1. 〈 A i 〉 M 1 〈 P 〉 Learning

real
error?

2. 〈 true 〉 M 2 〈 A i 〉

A i

counterexample –

counterexample –

false

true
true

false

YN

P holds
in M1||M2

P violated
in M1||M2

Learning 1. 〈 A i 〉 M 1 〈 P 〉 1. 〈 A i 〉 M 1 〈 P 〉

real
error?

2. 〈 true 〉 M 2 〈 A i 〉

refine assumption

refine assumption

To check in a scalable way that the composition of M1 and
M2 satisfies P, we use the assume-guarantee frameworks
described in the previous section. We expect that, with the
feedback obtained by our verification tools, the developers
of the system will correct their design models until the
property is achieved at the design level. At that stage, our
frameworks will have automatically generated an
assumption A that is strong enough for M1 to satisfy P but
weak enough to be discharged by M2.

To then establish that the property is preserved by the
implementation, our approach uses the automatically
generated assumption A, to perform assume-guarantee
reasoning at the source code level. The implementation is
decomposed as specified by the architecture at the design
level (i.e. components C1 and C2 implementing M1 and M2,
respectively), and we establish that C1 composed with C2
satisfies P by checking that C1 satisfies P under
assumption A, and by discharging A on C2. If both these
checks return true then the property is preserved by the
implementation. Otherwise, the counterexample(s)
obtained expose some incompatibility between the models
and the implementations, and are used to guide the
developers in correcting the implementation, the model, or
both. For the actual verification of source code, we
investigated two technologies: software model checking
and run time verification, which are described below.

Software Model Checking
We used the Java Pathfinder software model checker (JPF)
[18] developed at NASA Ames. JPF is an explicit state
model checker that analyzes programs written in Java (an
implementation for C++ analysis is currently being
developed). JPF checks for deadlocks and assertion
violations. JPF is built around a special purpose Java
Virtual Machine (JVM) that allows Java programs to be
analyzed. JPF supports depth-first, breadth-first and
several heuristic search strategies to search systematically
explore the state spaces of the analyzed programs.

Run Time Verification and Automated Test Input
Generation
For the first version of the Executive we focused on
checking implementations using compositional reasoning
and software model checking tools. In the second version
we experimented with methods that provide even more
scalability at the price of exhaustiveness. Specifically we
investigated the use of lighter-weight analysis techniques,
i.e. run time verification, for the compositional analysis of
the second version of the executive.

Run time verification is an advanced testing technique that
provides a means for constructing oracles that examine not
just the output and interfaces of a system, but the internal
computational status of the system. In run time
verification, a program is instrumented to emit events
which are then monitored to check for conformance to

formalize requirements, either stated as temporal logic
assertions, or as specialized algorithms looking for
common errors, such as deadlocks and data races.

For the analysis of the Rover Executive, we used the Eagle
temporal logic runtime verification framework [5]. In order
to generate different executions for thorough testing, we
used automated test input generation techniques developed
at NASA Ames to create all (non-isomorphic) input plans
up to a pre-defined size [5]. Given a formal description of
the inputs to a system, the test input generation techniques
combine symbolic execution, model checking and heuristic
search to systematically search and generate the input state
space and to achieve full coverage of the input
specification.

Modeling and Analysis of the Rover Executive

Initial Modeling
We produced abstract models of the Rover Executive that
contained enough information – but at a higher level – to
allow us to study architectural properties of the system and
detect potential integration problems. The developer of the
executive initially described the architecture of the system
as a hierarchy of threads as illustrated in Figure 2.
Moreover, he provided some design documents in his own,
ad-hoc flowchart-style notation, describing the main
functionality of the threads in the Rover Executive.

db unlock

db condvar signal

return

Database::dbChanged = true

changes to Database

db lock

Database::DBAssert

Database_DBAssert =
 (db.lock ->
 info.assign[Data] ->
 dbChanged.assign[True]->
 SignalCV('dbCV);Unlock),
Unlock =(db.unlock->END).

Figure 6. Original design (left) and corresponding FSP
model (right) produced for a method in the database

These documents were produced “after the fact”, meaning
after a first implementation of the Rover was available. It
took the developer only a few hours to produce these
documents. Moreover, he found the diagrams that we
produced of the architecture of the system helpful, and

subsequently maintained it for communicating the
structure of the system to his collaborators.

Figure 6 illustrates the original design provided to us and
the corresponding (FSP) model that we produced. In the
model, Data is the domain of values for variable info.
SignalCV is the method that needs to be called to signal a
specific condition variable, in this case dbCV. Unlock is
simply a state alias – mutex db must get unlocked after
signaling dbCV and before returning.

We made a systematic effort to keep the architecture
explicit in the model. Each thread has a unique instance
name – the name of the thread in the architecture – which
prefixes all the actions in its behavior, thus clearly
differentiating its behavior from that of other threads in the
system. This was achieved by the instantiation operator
that the LTSA tool provides. Moreover, communication
points were modeled by binding the associated actions,
captured by the renaming operator of the LTSA. The
resulting model was approximately 600 lines of FSP code
that had a very close correspondence to the design
documents provided by the developer.

Modeling the New Executive
As mentioned, the developer changed the design of the
Executive, partly as a result of our analysis. We created
two new models for the design level analysis of the new
executive. Model 1 (~800 lines of FSP code) captures the
new architecture of the executive, the queuing mechanism
and the detailed event handling for block and task nodes.
Model 2 (~900 lines of FSP code), which captures
synchronous and asynchronous execution of floating
branches.

Model 1: Queuing and Event Handling
We reused from our previous model the FSP encoding of
the functionality of mutexes and condition variables. We
added a model for the FIFO Queue and the event handling
mechanism in the Executive and we updated the
ExecCondChecker and ActionExecution models according
to the new design, as illustrated in Figure 3.

Model 2: Floating Branch Execution
We extended Model 1 to handle the execution of floating
branches. This execution is triggered by pre-defined
conditions. Floating branches can be synchronous (i.e.
triggered at action transitions within the plan) or
asynchronous (i.e. monitored continuously in parallel with
execution). The execution of floating branches involves
suspending execution of the principal plan, executing the
floating branch, and resuming execution in the principal
plan. In the case of asynchronous floating branches, the
currently executing action is suspended, and then it
resumes after completion of the floating branch. We
extended the Executive’s main loop to deal with new
events (e.g. Task Suspension/Suspended, Task Resume,

Floating Branch Expand and Floating Branch Terminate).
We also extended the event handling mechanism in node
(i.e. block or task) execution, to deal with
suspension/resuming of the execution of the current node
when a floating plan is activated. We added functionality
for event handling in nodes of synchronous and
asynchronous floating branches.

Properties
Our analysis focused on properties related to the correct
execution of the plans, according to the plan semantics,
and to the synchronization issues between threads.
Specifically, we analyzed the following properties:

P1: If the last task in the plan terminates successfully, then
the only possible outcome for the plan is successful
termination.

P2: When a task fails, the continue-on-failure flag on the
block will always be checked before any outcome is
produced; moreover, if continue-on-failure is true, the
outcome is success, otherwise it is failed.

P3: The Executive only receives ExecCondChecker events
if it has registered for them.

P4: The ExecCondChecker only puts events in the queue if
the Executive registered for them.

P5: When a task fails, it will always check its continue-on-
failure flag; moreover, if the continue-on-failure flag is
false, no subsequent task in the block will be started; new
tasks can be started after the parent block reports the
results (i.e. other block is expanded).

P6: If a task fails, then the parent block’s continue-on-
failure flag will be checked: if it is true, then the block
succeeds, otherwise it fails.

P7: If the Executive thread reads the value of the shared
variable savedWakeupStruct, then the ExexcCondChecker
thread should not read it until the Executive clears it first.

P8: (Race condition) All accesses to shared structure
conditionSetChanged by the Executive and the
ExecCondChecker threads will be protected by locks.

P9: (Race condition) All accesses to shared structure
existConditions by the Executive and the
ExecCondChecker threads will be protected by locks.

P10: Absence of local and global deadlocks.

P11: No irrelevant action execution events can happen.

P12: No irrelevant condition checker events can happen.

P13: Floating branches and principal plans cannot execute
concurrently.

Design Level Verification
Our initial analysis uncovered a number of synchronization
problems such as deadlocks and data races. Moreover, the
design models were used for quick experimentation with
alternative solutions to exiting defects, leading eventually
to the re-design of the software.

As mentioned, safety properties are expressed as LTSs. For
example, Figure 7 illustrates property P7 that was
formulated by the developer. The property is represented
as two states, corresponding to the shared variable
savedWakeupStruct being cleared or not cleared, and with
a third state representing the error state. The developer
expected the property to be satisfied. We applied assume-
guarantee reasoning as supported by our tools, were
assumptions were generated for the ExecCondChecker
thread (module M1) and discharged on the Executive thread
(module M2).

The results obtained from the design-level analysis are
summarized in the first row of Table 1. The design level
model is an order of magnitude smaller than the
corresponding Java implementation. The largest state space
that our modular verification techniques compute consists
of 541 states, as opposed to 4672 states computed by
monolithic model checking. We therefore achieved an
order of magnitude savings in terms of space.

Table 1. Analysis results at design & code level

Analysis Tool LOC Monolithic
model
checking

Modular
verificatio
n

Design
level

LTSA 700 FSP 4672 states 541 states

Code
level

JPF 7.2K
Java

183K states 53K states

The generated assumption consists of 5 states. It describes
an environment where the Executive thread reads the
savedWakeupStruct variable after acquiring the exec mutex
and holds the mutex until it clears (assigns value 0) the
variable. The assumption is illustrated below (in FSP).

Assumption = Q0,
Q0 = (executive.exec.lock -> Q2),
Q2 = (executive.exec.unlock -> Q0
 | executive.savedWakeupStruct.read[1] -> Q3
 | executive.savedWakeupStruct.assign[0] -> Q4
 | executive.savedWakeupStruct.read[0] -> Q5),
Q3 = (executive.savedWakeupStruct.read[1] -> Q3
 | executive.savedWakeupStruct.assign[0] -> Q4),
Q4 = (executive.exec.unlock -> Q0
 | executive.savedWakeupStruct.assign[0] -> Q4
 | executive.savedWakeupStruct.read[0] -> Q5),
Q5 = (executive.savedWakeupStruct.assign[0] -> Q4
 | executive.savedWakeupStruct.read[0] -> Q5).

This assumption could not be discharged on the Executive
thread. The counterexample obtained describes a scenario
where the Executive thread reads savedWakeUpStruct and
then it performs wait on a condition variable associated
with the exec lock (a wait operation automatically releases
the lock). The problem was temporarily fixed by adding to
the Executive thread a statement that clears the shared
variable. Note that the variable savedWakeupStruct was
eliminated altogether when the Executive was re-designed.

0

error

exec.savedWkupStr.read[0..1]

1

exec.savedWkupStr.assign[0]
execCondCh.savedWkupStr.assign[0..1]

execCondCh.savedWkupStr.read[0..1]

Figure 7. Example property

Stage I In the first stage, we checked several simple
properties (P10, P11, P12). To do this, we decomposed the
system into two modules, M1 that consists of the Executive,
the ActionExecution and the EventQueue, and M2 that
consists of the ExecCondChecker and the remaining
threads in the system. The results of our analysis are
summarized in Tables 2a-2c.

Table 2a. Analysis results - stage I
Property Subsyste

m
#States, #Trans |A| Result

P10 M1 3805, 10450 n/a false
P11 M1 8478, 22875 n/a true
P12 M1 8478, 22875 37

4
false

Table 2b. Analysis results – property P12
Subsystem #States
M1 8478
M2 (discharge) 18080
M1 || M2 (CRA) 74649
M1 || M2 (monolithic) 84690

Table 2c. Reachable state space computation
Subsystem #States
M1 8478
M2 14448
M1 || M2 (monolithic) > 10 Million

We first checked local and global deadlocks (P10) by
incrementally putting components of M1 and M2 together.

Note that, in the LTSA, the assumption is that environment
inputs are always available. This is a significant benefit for
modeling partially specified systems (or verification of
modules of systems), because one does not need to
explicitly model drivers for the component. Moreover,
uninteresting cases where the Executive is deadlocked
because no plans are available at the input are ignored.

A local deadlock was detected in M1. Two threads,
Executive and ActionExecution, synchronize on shared
transitions (in order to start and stop the execution of
actions) and they also synchronize via the EventQueue
(i.e., the ActionExecution sends events when the execution
of the action is completed). The counterexample represents
a behavior where the Executive tries to stop the current
action, without knowing that the current action was
completed (i.e., before processing the respective event),
while the ActionExecution is waiting to start a new action.
This was a problem in our design, which we fixed (by
adding self-loops for “unconsumed” stops from the
previous actions).

Property P11 was checked on M1. This property holds in
any environment. Property P12 was checked on the same
subsystem. This property does not hold in any
environment, since it depends on the behavior of the
ExecCondChecker, which is in M2. We generated
automatically the assumption that M1 needs to make about
the ExecCondChecker for the property to hold. We
obtained an assumption of 374 states. By minimizing M1
using compositional reachability analysis as supported by
the LTSA, we obtain a subsystem of 1493 states; the
assumption is therefore more concise to use for analysis.

When we tried to discharge this assumption on the
ExecCondChecker, after exploring 18080 states we
obtained a counterexample describing the following
scenario: the ExecCondChecker detects the fact that a
maintenance condition has been broken, sends an event to
the EventQueue, but the action terminates before this event
gets handled. As a result, the event remains unconsumed in
the EventQueue and gets handled in the context of the next
node, at which time it is irrelevant. The counterexample
exhibited the fact that the system is highly asynchronous,
as a result of which it is possible for the EventQueue to
hold “obsolete” events that are no longer relevant to the
execution of the current node.

As illustrated in Table 2b, our assume-guarantee
framework enables a significant reduction in the state
space that needs to be explored (18080 states) as compared
both to CRA (74649 states) and to monolithic model
checking. Note that, as illustrated in Table 2c, if we disable
error detection and simply compute the reachable state
space of the model, monolithic model checking runs out of
memory after exploring 10 million states.

Stage II After we enriched our models with advanced
autonomy features (i.e. detailed task and block execution,

floating branch execution, etc.) we checked the remaining
properties (P1-P9, P13). We should first note that we could
not compute the reachable states of the whole system (the
computation runs out of memory when using 1GB of
memory); this means that checking any property on the
whole system would not complete.

We therefore used compositional techniques. Again, we
decomposed the system into components: M1 (the
Executive thread, the Event Queue and the ActionExecution
thread) and M2 (the ExecCondChecker thread). M1 has
47906 states, M2 has 14496 states. We analyzed the
properties using assume guarantee reasoning. Checking
properties P3, P4, P8, P9 required small assumptions (the
largest obtained assumption has 7 states). Interestingly,
properties P1, P2, P5, P6 were checked locally (no
environment assumption was necessary). This reflects the
modularized architecture of the new executive.

During our analysis we discovered a problem with the
design (reflected in the implementation) due to the
asynchronous communication between components
through the queue. Specifically, property P1 did not hold
because of the order of events arriving in the queue: if a
task terminates successfully and at the same time a time-
out occurs or a condition fails for the parent block, then,
the outcome for the parent block can be non-
deterministically success or failure, depending on the order
in which the corresponding events are put in the queue.
Similar problems were found in relation to the execution of
synchronous floating branches. The problems were
corrected according to the developer’s suggestions, by
adding an extra test for cases when events signaling time-
outs or failed conditions are received by the Executive
thread.

It is interesting to note that compositional reachability
analysis fails for this large case study. E.g. for M1
composed with property P3 which has 47918 states,
compositional reachability analysis runs out of memory,
while the generated assumption has only 5 states computed
in 16.165 seconds.

Code Level Verification

Model Checking We used JPF for the analysis of the
software components of the first version of the Executive
code (which was manually translated in Java). To check
each component in isolation, we used the assumptions that
were generated during design level analysis to build
appropriate environments. Techniques for automated
generation of environments from user supplied
assumptions are presented in [6]. These environments
provide stubs for the methods called by the component that
are implemented by other components, or test drivers that
execute a component by calling methods that the
component provides to its environment. Moreover, these

environments are constrained by the design level
assumptions.

Some of the results of this analysis are reported in the
second row of Table 1. Compositional verification yields a
3x improvement (in terms of memory used) over
monolithic verification. E.g., when we checked property
P7 on the corrected system, monolithic (non-
compositional) model checking explored 183K states and
it consumed 952 Mb of memory in 12 minutes and 12
seconds. In contrast, compositional verification explored at
most 60K states, and it consumed 315 Mb in 6 minutes and
55 seconds.

Run Time Verification We used Eagle for the run time
verification of the C++ code of the Executive. The design-
level artifacts (properties and assumptions) were
automatically translated into Eagle monitors. We
instrumented (by hand) the code of the Executive, to emit
events that appear in these assumptions and properties. To
generate test input plans, we encoded the plan language
grammar as a non-deterministic input specification.
Running model checking on this specification generates
hundreds of input plans in a few seconds.

We developed a tool that integrates run time verification
and test input generation to perform assume guarantee
style reasoning about the run-time behavior of the
executive. The tool is fully automated after setup. It
generates a set of test input plans, a script runs the
Executive on each plan and it calls Eagle to monitor the
generated run-time traces. The user can choose to perform
a whole program (monolithic) analysis or to perform
assume-guarantee reasoning. In the latter case, the
Executive is broken in two parts: M1 consists of the
Executive thread, the Event Queue and the ActionExecution
thread, and M2 consists of the ExecCondChecker thread
and the remaining threads.

We ran several experiments for different input plan
configurations. For Property P3, we found a discrepancy
between the implementation and the models, due to the
fact that nodes can send null conditions. Instead of putting
these in the condition list (and altering the values of
variables conditionSetChanged and existConditions), the
ExecCondChecker code immediately pushes an event to
the queue. We corrected this in the model.

One benefit of our approach is that the use of design-level
assumptions in the verification of software
implementations enables the detection of costly integration
problems well prior to system integration. In fact, assume-
guarantee verification can detect such problems as soon as
one component of a software system becomes “code
complete” (while the remaining software components may
not be even implemented yet). Whenever the complete
implementation of one component becomes available, we
can check it against the required properties, under
environments that are suitable restricted by the design-

level assumptions. When the rest of the components
become available, we check the assumptions on these
components. As a result, we guarantee that the whole
system behaves correctly, without being necessary to
perform verification/testing on the integrated components.

Also note that assume-guarantee verification provides
better unit testing. We only test components (i.e. units) in
the environments in which it can be expected that the units
will be integrated. Moreover, assume-guarantee reasoning
provides increased behavioral coverage of the integrated
system. We have found that, in some cases, assume-
guarantee verification uncovers errors that escape
integration testing. The reason is that by generating and
analyzing traces for each component in isolation, we can
predict, by mathematical inference, properties about all the
possible inter-leavings of these traces, while at system
integration, one could generate only a subset of these
interleavings.

Conclusions and Future Work
We described the development and application of
compositional verification techniques to a significant
autonomous system throughout its lifecycle. Subtle errors
in the design and implementation of a rover executive have
been detected Compared to testing by itself, these
techniques are particularly good for two challenging
aspects of autonomy verification:

1) Assuring correct execution of plans, particularly in
environments that cause multiple failures of plan
primitives. Robust execution of plans, especially plans
with contingencies, is a significant advantage of autonomy
software compared to traditional sequence execution.
Verifying this advantage is expected to be a significant
factor in the acceptance of autonomy software for NASA.

2) Concurrency is an inherent feature of autonomy
software but is difficult to debug through testing alone.
Concurrency is inherent to autonomy: first, because
responding robustly to asynchronous environmental
changes introduces concurrency – and difficulties such as
race conditions – independent of implementation. Second,
in contrast to sequence execution or simple sequential
plans, plans for rovers consist of multiple concurrent tasks
overlapping in time. Third, modern programming practices
for complex software favors encapsulating control into
multiple threads, introducing concurrency at the
implementation level. Concurrency errors are typically
manifested only as transient faults in black-box testing,
and are often masked by thread scheduling and
computational resource profiles that differ subtly and
uncontrollably between the testing environment and actual
field conditions. Our techniques provide high assurance
that autonomy software is free of concurrency errors.

The techniques presented have several benefits. First, they
can be applied early in the software development life
cycle, when it is cheaper to detect and fix bugs. Second,
our compositional techniques provide a way to
automatically decompose global (system-level)
requirements into local properties, which are cheaper – in
terms of time and consumed memory – to check, with an
increased level of confidence. Third, assumptions allow
checking global properties (that are usually checked at
integration testing) at unit testing level, thereby increasing
the chances of detecting costly integration errors early.
Fourth, our results show that compositional reasoning can
enhance integration testing at the source-code level (by
exploring multiple inter-leavings in concurrent programs).

We assume a top-down software development process
where one first creates and debugs design models that are
subsequently used to guide the implementation. It goes
without saying that it is not a straightforward task to obtain
a correct model. However, verification tools provide
several features such as interactive simulation, which
facilitate the debugging of models. Moreover, as our
results show, it is essential to make connections between
verification performed at the design level with the actual
implemented system. Note that we are currently
investigating a complementary approach that uses
abstraction techniques to automatically extract models
from source code [3].

In the future, we plan to leverage our work for the analysis
of other executives (and autonomy software), with minimal
modifications (e.g. for plan generation, we could simply
modify the plan language grammar; for properties and
assumptions, we expect to build upon the existing
specifications). For example, we plan to participate in the
development and analysis of next generation executives,
built within the CLARAty decision layer distribution [10].

References

[1] J. M. Cobleigh, D. Giannakopoulou, C. S. Pasareanu,
Learning Assumptions for Compositional Verification, in
Proc. 9th International Conf. on Tools and Algorithms for
the Construction and Analysis of Systems, 2003.

[2] D. Giannakopoulou, C. S. Pasareanu, H. Barringer,
Component Verification with Automatically Generated
Assumptions, J. of Automated Software Engineering,
2005.

[3] S. Chaki, E. Clarke, D. Giannakopoulou, and C.
Pasareanu. Abstraction and assume-guarantee reasoning
for automated software verification. RIACS TR 05.02,
October 2004.
 [4] D. Giannakopoulou, C. S. Pasareanu, J. M. Cobleigh,
Assume-guarantee Verification of Source Code with
Design-level Assumptions, Proc. of the 26th International
Conf. on Software Engineering, 2004.

[5] C. Artho, H. Barringer, A. Goldberg, K. Havelund, S.
Khurshid, M. Lowry, C. S. Pasareanu, G. Rosu, K. Sen,
W. Visser, R. Washington, Combining Test Case
Generation and Runtime Verification, in Theoretical
Computer Science, 2004.

[6] O. Tkachuk, M. Dwyer, C. S. Pasareanu, Automated
Environment Generation for Software Model Checking, in
Proc. of the 18th IEEE International Conf. on Automated
Software Engineering, 2003.

[7] D. Dvorak, R. Rasmussen, G. Reeves, A. Sacks.
Software Architecture Themes in JPL’s Mission Data
System. In Proceedings 2000 IEEE Aerospace Conference.

[8] J. Magee, and J. Kramer, Concurrency: State Models &
Java Programs: John Wiley & Sons, 1999.

[9] S. C. Cheung, J. Kramer, Checking Safety Properties
using Compositional Reachability Analysis, ACM
Transactions on Software Engineering and Methodology,
8(1):49-78, 1999.

[10] I.A. Nesnas, A. Wright, M. Bajracharya, R. Simmons,
T. Estlin, W.S. Kim, CLARAty: An Architecture for
Reusable Robotic Software, SPIE Aerosense Conf., 2003.

 [11] E. M. Clarke, O. Grumberg, and D. A. Peled, Model
Checking: The MIT press, 1999.

[12] T. A. Henzinger, S. Qadeer, and S. K. Rajamani, You
assume, we guarantee: methodology and case studies, in
Proc. of the International Conf. on Computer-Aided
Verification (CAV'98). LNCS 1427, pp. 440-451.

[13] C. B. Jones, Specification and design of parallel
programs. Information Processing 83: Proceedings of the
IFIP 9th World Congress, 1983: pp. 321--332.

[14] A. Pnueli, In Transition for Global to Modular
Temporal Reasoning about Programs, in Procedings of the
Logic and Models of Concurrent Systems. 1985.

[15] G. Brat, D. Giannakopoulou, A. Goldberg, K.
Havelund, M. Lowry, C. S. Pasareanu, A. Venet, W.
Visser, R. Washington, Experimental Evaluation of
verification and validation Tools on Martian Rover
Software, in International Journal on Formal Methods in
System Design, September – Nov. 2004, 25(2-3), 167-198.

[16] R. Washington, K. Golden, J. Bresina. Plan
Execution, Monitoring, and Adaptation for Planetary
Rovers. Electronic Transactions on AI, 4(A):3-21,2000.

[17] D. Angluin, Learning Regular Sets from Queries and
Counterexamples, Information and Computation, 75(2).

[18] W. Visser, K. Havelund, G. Brat, S. Park, F. Lerda.
Model Checking Programs. Automated Software
Engineering Journal.Volume 10, Number 2, April 2003.

